22X˜\tilde{X}XXX¯\overline{X}4433VV(p,q)(p,q)SL 2(R)×Orth(V R)SL_2(R) \times Orth(V_R)𝒮(V R)\mathcal{S}(V_R)V RV_RG=SO 0(V R)G = \SO_0(V_R)KK𝔤\mathfrak{g}𝔨\mathfrak{k}𝔤=𝔭𝔨\mathfrak{g} = \mathfrak{p} \oplus \mathfrak{k}GG𝒮(V)\mathcal{S}(V)φ\varphirrφ˜\tilde{\varphi}D=G/KD= G/Kpqpq𝒮(V)\mathcal{S}(V)\mathcal{L}VVΘ=Θ \Theta=\Theta_{\mathcal{L}}Θ= δ \Theta = \sum_{\ell \in \mathcal{L}} \delta_{\ell}\ellΘ\ThetaG=Stab()G\G = \Stab(\mathcal{L}) \subset GΓ\Gamma'SL(2,Z)SL(2,\Z)Θ\ThetaΓ\Gamma'φ˜\tilde{\varphi}rrθ φ\theta_{\varphi}X=Γ\DX = \Gamma \backslash Dφ\varphikkSO(2)SL 2(R)\SO(2) \subset SL_2(R)θ φ\theta_{\varphi}h\hkkG\G'θ φ\theta_{\varphi}ff(pqr)(pq-r)η\etarrCCXXffη\etaCCφ\varphiφ q V\varphi^V_{q}(𝒮(V) q𝔭 *) K(\mathcal{S}(V) \otimes \wedge^q \mathfrak{p}^{\ast})^K(p+q)/2(p+q)/2SL 2SL_2XXSO(3,2)\SO(3,2)SO(p,q)\SO(p,q)p+q>6p+q>6pqp \geq qφ q V\varphi_q^VH q(X)H^q(X)φ q V\varphi^V_{q}VV(2,2)(2,2)Q\Q11Dh×hD \simeq \h \times \hXXX¯\overline{X}XXPPe(P)e'(P)33X¯\overline{X}44XXX¯=e(P)\partial \overline{X} = e'(P)k:X¯X¯k: \partial \overline{X} \hookrightarrow \overline{X}C nC_nC nC_nXXT nT_nX˜\tilde{X}nNn \in \NH 2(X,X,Q)H_2(X, \partial X,\Q)φ 2 V\varphi^V_{2}CCXX22C nC_nq=e 2πiτq = e^{2\pi i \tau}τh\tau \in \hθ φ 2 V\theta_{\varphi^V_{2}}22X{X}H c 2(X)H^2_c(X)θ φ 2 V\theta_{\varphi^V_{2}}XXX¯\overline{X}k *k^{\ast}θ φ 2 V\theta_{\varphi^V_{2}}X¯\partial \overline{X}X¯\partial\overline{X}θ ϕ 1 W\theta_{\phi_1^W}WW(1,1)(1,1)2211X¯\partial \overline{X}θ ϕ 1 W\theta_{\phi_1^W}k *θ φ 2 Vk^{\ast} \theta_{\varphi^V_{2}}k:X¯X¯k: \partial \overline{X} \hookrightarrow \overline{X}[θ φ 2 V,θ ϕ 1 W][\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]H c 2(X)H^2_c(X)CCX¯\overline{X}H 2(X,X,Z)H_2({X},\partial {X},\Z)[θ φ 2 V,θ ϕ 1 W][\theta_{\varphi^V_{2}}, \theta_{\phi_1^W}]CCC nC_nX¯\partial \overline{X}C nC_nX¯\partial \overline{X}22A nA_nX¯\partial \overline{X}C nC_nX¯\partial \overline{X}C nC_nA nA_nC n cC_n^cX¯\overline{X}H 2(X,Q)H_2({X},\Q)CCX¯\overline{X}22C n cC^c_n22X¯\overline{X}H 2(X)H^2(X)H 2(X,X)H_2({X}, \partial {X})H 2(X)H^2(X)Orth(p,q)Orth(p,q)θ φ q V\theta_{\varphi^V_{q}}33θ ϕ 1 W\theta_{\phi_1^W}11aabb33MMaabbMMAA22MMaacc11X¯\partial \overline{X}C n\partial C_n22 cθ ϕ 1 W\int_c \theta_{\phi_1^W} n>0Lk(C n,c)q n\sum_{n>0}\Lk(\partial C_n,c) q^n33MM n>0Lk(C n,c)q n\sum_{n>0}\Lk(\partial C_n,c) q^n223/23/2j:XX˜j:X \hookrightarrow \tilde{X}T nT_nXXC nC_nX˜\tilde{X}T n cT_n^cT nT_nH 2(X˜,Q)H_2(\tilde{X},\Q)X˜\tilde{X} n0[T n c]q n\sum_{n \geq 0} [T_n^c] q^n22H 2(X˜,Q)H_2(\tilde{X},\Q)j *C n c=T n cj_{\ast} C_n^c = T_n^cX˜\tilde{X}T n cT^c_nT mT_m22FFT n cT mT_n^c \cdot T_mT n cT m=(T nT m) X+(T nT m) T_n^c \cdot T_m = (T_n \cdot T_m)_X + ({T}_n \cdot {T}_m)_{\infty}T nT_nT mT_mXX(T nT m) ({T}_n \cdot {T}_m)_{\infty} n=0 (T nT m) Xq n\sum_{n=0}^{\infty} (T_n \cdot T_m)_X q^n n=0 (T nT m) q n\sum_{n=0}^{\infty} (T_n \cdot T_m)_{\infty} q^nF XF_XF F_{\infty}F(τ)F(\tau)C=C mC=C_m(T nT m) X(T_n \cdot T_m)_XF XF_XF F_{\infty}X¯\partial \overline{X}θ ϕ 1 W\theta_{\phi_1^W}θ ϕ 1 W\theta_{\phi_1^W}φ 2 V\varphi^V_2nnθ φ 2 V\theta_{\varphi^V_{2}}C nC_nφ 2 V\varphi^V_2C nC_nΞ(n)\Xi(n)C nC_nΞ(n)\Xi(n)T n cT_n^cX˜\tilde{X}Ξ(n)\Xi(n)VV44(,)(\,,\,)(2,2)(2,2)G̲=SO(V)\underline{G} = \SO(V)Q\QG=G̲ 0(R)SO 0(2,2)G=\underline{G}_0(R) \simeq \SO_0(2,2)G̲\underline{G}D=D VD= D_V22V(R)V(R)(,)(\,,\,)dimz=2\dim z =2(,)| z<0(\,,\,)|_z < 0{e 1,e 2,e 3,e 4}\{e_1,e_2,e_3,e_4\}V RV_{R}(e 1,e 1)=(e 2,e 2)=1(e_1,e_1)=(e_2,e_2)=1(e 3,e 3)=(e 4,e 4)=1(e_3,e_3)=(e_4,e_4)=-1xxx ix_iDDz 0=[e 3,e 4]z_0=[e_3,e_4]e 3e_3e 4e_4KSO(2)×SO(2)K \simeq \SO(2)\times \SO(2)GGz 0z_0DG/KD \simeq G/KDH×hD \simeq \H \times \hP̲\underline{P}\ellP=P̲ 0(R)P= \underline{P}_0(R)N̲\underline{N}N=N̲(R)N = \underline{N}(R)u=(e 1+e 4)/2u =(e_1+e_4)/\sqrt{2}u=(e 1e 4)/2u' =(e_1-e_4)/\sqrt{2}(u,u)=1(u,u')=1u,uu,u'Q\Q=Qu\ell = \Q u=Qu\ell'=\Q u'W= W = \ell^{\perp} \cap {\ell'}^{\perp}W R=Span R(e 2,e 3)W_{R} = \Span_{R}(e_2,e_3)uu'P̲\underline{P}u,e 2,e 3,uu,e_2,e_3,u'NW RN \simeq W_{R}DDz=z(t,s,w)z=z(t,s,w)zzV RV_{R}z=[n(w)a(t)m(s)e 3,n(w)a(t)m(s)e 4]z=[n(w)a(t)m(s)e_3,n(w)a(t)m(s)e_4]MMu 2,u 2u_2,u_2'W RW_{R}m(s)=m(e s)m(s) = m'(e^s)MSO 0(W R)M \simeq \SO_0(W_{R})𝔫,𝔞,𝔪\frak{n},\frak{a},\frak{m}PPω αμ\omega_{\alpha\mu}σ:𝔫𝔞𝔪𝔤𝔤/𝔨𝔭\sigma: \frak{n}\frak{a}\frak{m} \to \frak{g} \to \frak{g}/\frak{k} \simeq \frak{p}W RW_{R}w=wu 2+wu 2w= wu_2+w'u_2'Dh×hD \simeq \h \times \hV RM 2(R)V_{R} \simeq M_2(R)u=kzxz1000u = \kzxz{1}{0}{0}{0}u=kzxz0001u' = \kzxz{0}{0}{0}{1}q(x)=(x,x)/2q(x) = (x,x)/2q(x)=det(x)q(x) = \det(x)e 2=12kzxz0110e_2= \tfrac1{\sqrt{2}}\kzxz{0}{1}{-1}{0}e 3=12kzxz0110e_3= \tfrac1{\sqrt{2}}\kzxz{0}{1}{1}{0}SL 2(R)×SL 2(R)SL_2(R) \times SL_2(R)M 2(R)M_2(R)(g 1,g 2)x=g 1xtg 2(g_1,g_2)x = g_1x\, {^{t}g_2}Spin(2,2)SL 2R×SL 2(R)\Spin(2,2) \simeq SL_2{R} \times SL_2(R)Dh×hD \simeq \h \times \h(z 1,z 2)=(x 1+iy 1,x 2+iy 2)h×h(z_1,z_2)= (x_1+iy_1,x_2+iy_2) \in \h \times \hLLVVNNLL #L \subseteq L^{\#}(x,x)2Z(x,x) \in 2 \ZxLx \in Lq(L #)Z=1NZq(L^{\#}) \Z = \tfrac1{N}\ZhL #h \in L^{\#}ΓStabL\Gamma \subseteq \Stab{L}:=L+h\mathcal{L}:=L+hGG=Qu\ell =\Q uuuLLVVQ\QG̲\underline{G}11VVQ\Qd>0d>0K=Q(d)K = \Q(\sqrt{d})Q\Q𝒪 K\mathcal{O}_Kxxx \mapsto x'KKVM 2(K)V \subset M_2(K)M 2(K)M_2(K)tx=x^tx' =-xM 2(K)M_2(K)VV(2,2)(2,2)Q\Q11LLddSL 2(K)SL_2(K)SL 2R×SL 2(R)SL_2{R} \times SL_2(R)g(g,g)g \mapsto (g,g')SL 2(𝒪 K)SL_2(\mathcal{O}_K)LLg.x=gxtg\g.x = \g x{^t\g'}d1(mod4)d \equiv 1 \pmod{4}XXXXQ\QXXYYXXYYYYΦ\PhiXXΦ\PhiYYXXΦ\PhiYYPPG P=GP\G_P = \G \cap PG N=G PN\G_N = \G_P \cap NG P/G N\G_P/\G_NP̲/N̲\underline{P}/\underline{N}P̲/N̲\underline{P}/\underline{N}G P/G N\G_P/\G_N11 /\ell^{\perp}/\ell(1,1)(1,1)G P/G NZ\G_P/\G_N \simeq \ZgG Pg \in \G_Pg¯\bar{g}G P/G N\G_P/\G_NggMMggG M:=G PM\G_M :=\G_P \cap MP=NAMP = NAMD¯\overline{D}DDP̲\underline{P}P=NAMP=NAMD WMRD_W \simeq M \simeq RWWD¯\overline{D}P̲\underline{P}G\GDDD¯\overline{D}X=GbackDX = \G \back DX¯\overline{X}[P̲][\underline{P}]G\GX W:=G MbackD WX_W := \G_M \back D_We(P)e'(P)T 2T^2G NbackN\G_N \back Nκ:e(P)X W\kappa: e'(P) \to X_We(P)e(P)D¯\overline{D}e(P)e'(P)X¯\overline{X}[(T,]×e(P)][(T,\infty] \times e'(P)]TTz(t,s,w)z(t,s,w)t>Tt>Ti:XX¯i: X \hookrightarrow \overline{X}X¯\overline{X}XXXX'XXX¯\overline{X}e(P)e'(P)XX'X˜\tilde{X}π:X˜X\pi:\tilde{X} \to X'j:XX˜j:X \hookrightarrow \tilde{X}X˜\tilde{X}X inX^{in}XXX outX^{out}e(P)e'(P)X inX^{in}X outX^{out}X inX outX^{in} \cap X^{out}Γ N=π 1(T 2)\Gamma_N =\pi_1(T^2)Γ P\Gamma_PH 1(T 2,Q)H_1(T^2,\Q)H 1(e(P),Q)H_1(e'(P),\Q)a PH 1(e(P),Z)a_P \in H_1(e'(P),\Z)κ:e(P)X W\kappa:e'(P) \to X_Wb PH 2(e(P),Z)b_P \in H_2(e'(P),\Z)κ\kappaa Pa_Pb Pb_P11a Pa_Pb Pb_Pa Pa_PH 1(e(P),Q)H_1(e'(P),\Q)b Pb_Pe(P)e'(P)a Pa_Pe(P)e'(P)b Pb_PZ\ZΩ P\Omega_PPP22e(P)e'(P)b Pb_PT 2T^2H 2(e(P),Z)H_2(e'(P),\Z)Ω P\Omega_PT 2T^2W RNW_{R} \simeq NT 2=G NbackNT^2=\G_N \back N11XXX˜\tilde{X}S PS_{P}PPH 3(X˜)=0H_3(\tilde{X}) =0PPa Pa_PH 1(X out)H_1(X^{out})b Pb_Pb Pb_PX˜\tilde{X} PH 2(e(P))H 2(X)j *H 2(X)\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)H 2(X˜)H_2(\tilde{X})j #j_{\#} PH 2(e(P))H 2(X)j *H 2(X)\oplus_P H_2(e'(P)) \to H_2(X) \to j_{\ast} H_2(X)H 2(X¯)H_2(\partial \overline{X})j *j_{\ast}XXA c (X)A_c^{\bullet}(X)XXH c (X)H_c^{\bullet}(X)XXC C^{\bullet}i *i^*i:XX¯i: X \hookrightarrow \overline{X}C C^{\bullet}d(a,b)=(da,i *adb)d(a,b) = (da, i^*a - db)(a,b)(a,b)C C^{\bullet}[[a,b]][[a,b]]A c (X)C A_c^{\bullet}(X) \to C^{\bullet}c(c,0)c \mapsto (c,0)C C^{\bullet}VVX¯\partial \overline{X}π:VX¯\pi:V \to \partial \overline{X}bbX¯\partial \overline{X}π *b\pi^{\ast} bfftt11t=t=\inftytTt \leq TTTffVVX¯\partial \overline{X}ffVV(a,b)(a,b)C iC^iμ\muX¯\partial \overline{X}[a,b][a,b]H c i(X)H^i_c(X)α\alpha[[a,b]][a,b][[a,b]] \mapsto [a,b][a,b][a,b]η\etaX¯\overline{X}CCX¯\overline{X}[a,b],[η]= X¯aη X¯bi *η, and  [a,b],C= Ca Cb. \langle[a, b], [\eta]\rangle = \int_{\overline{X}}a\wedge \eta - \int_{\partial \overline{X}} b \wedge i^*\eta, \ \text{and} \ \ \langle [a,b],C \rangle = \int_{C}a - \int_{\partial C} b.xVx \in V(x,x)>0(x,x)>0D xD_xDDG xG\G_x \subset \GxxC xC_xXXnQn \in \QcalL n={x;12(x,x)=n}\calL_n = \{ x \in \mathcal{L}; \, \tfrac12(x,x)= n\}C nC_nH 2(X,X,Z)H_2(X,\partial X,\Z)C x cC_x^cC xC_xX¯\partial \overline{X}C¯ x\overline{C}_xC x\partial C_xe(P)e'(P)(x,u)0(x,u) \neq 0U U_{\infty}e(P)e(P)D xU =. D_x \cap U_{\infty} = \emptyset. (x,u)=0(x,u) = 0D¯ xe(P)\overline{D}_x \cap e(P)pps(x)s(x)s(x)s(x)RRs(x)s(x)D¯ xe(P)\overline{D}_x \cap e(P)WWc xC xc_x \subset \partial C_xs(x)s(x)D¯ xe(P)\overline{D}_x \cap e(P)e(P)e(P)e(P) \to e'(P)11C x\partial C_xPPκ:e(P)X W\kappa: e'(P) \to X_Wc xc_xc yc_yC¯ n\overline{C}_nC n\partial C_ne(P)e'(P)calL V=calL=L+h\calL_V=\calL = L +hL W,kWL_{W,k} \subset Wh W,kL W,k #h_{W,k} \in L^{\#}_{W,k}WNW \simeq NG N=NG\G_N = N \cap \GΛ W\Lambda_WWWuun(w)x=x+(w,x)un(w) x= x + (w,x)uxu x \in u^{\perp}calL W{\calL}_WΛ W\Lambda_WC ne(P)\partial C_n \cap e'(P)min\min'C n,P:=C ne(P)\partial C_{n,P} := \partial C_n \cap e'(P)calL n,u={xcalLu ;(x,x)=2n}\calL_{n,u} = \{ x \in \calL \cap u^{\perp};\, (x,x)=2n\}calL n,u\calL_{n,u}C n,P\partial C_{n,P}Γ\GammaVV Γ\sim_{\Gamma}G pbackcalL n,uV\G_p \back \calL_{n,u} \subset V[x i]=[x i] P,1ik[x_i]= [x_i]_P, 1 \leq i \leq kRRR= i=1 k y[x i]c y.R = \coprod _{i=1}^k \coprod_{ y \in [x_i]} c_y.(C x i) P= y[x i]c y(\partial C_{x_i})_P = \coprod_{ y \in [x_i]} c_y11e(P)e'(P)X\partial Xy[x i]y \in [x_i]D yD_yC x iC_{x_i}DDe(P)e(P)c yc_yR= ΓbackcalL n,uC x i.R= \coprod_{ \sim_{\Gamma} \back \calL_{n,u}} \partial C_{x_i}.C n,P\partial C_{n,P} xG Mback W (x,x)=2n 0k<min laΛ W|(la,x)|x+ku\coprod_{ \substack{x\in \G_M \back \mathcal{L}_W \\ (x,x)=2n}} \coprod_{0 \leq k < \min'_{\la \in \Lambda_W} |(\la,x)|} x+kuG P\G_PcalL n,u\calL_{n,u}c x+kuc_{x+ku}x n,ux \in \mathcal{L}_{n,u}n>0n>022a xa_xe(P)e'(P)a x=c x\partial a_x = c_x a xΩ P=0\int_{a_x} \Omega_P = 0Ω P\Omega_Pa xa_x a xΩ PQ\int_{a_x} \Omega_P \in \Q(A x) P(A_x)_P(A x) P= y[x]a x(A_x)_P = \sum_{y \in [x]} a_xe(P)e'(P)A xA_x22X\partial X(C x) P= y[x]c y(\partial C_x)_P = \sum_{y \in [x]} c_y22X¯\overline{X}22A xA_xX¯\partial \overline{X}C x cC_x^cH 2(X¯)=H 2(X)H_2(\overline{X}) = H_2(X)C n cC_n^cX˜\tilde{X}T n cT_n^cT nT_nX˜\tilde{X}C nC_nX˜\tilde{X}T nT_nH 2(X˜)H_2(\tilde{X})X˜\tilde{X}T n cT_n^cT nT_nj *H 2(X)j_{\ast} H_2(X)XX33e(P)e'(P)T nT_nT n=T nX in+T nX outT_n = T_n \cap X^{in} + T_n \cap X^{out}22X˜\tilde{X}j *C¯ n=T nX inj_{\ast} \overline{C}_n = T_n \cap X^{in}22B n=T nX outB_n = T_n \cap X^{out}C n=B n\partial C_n = - \partial B_nT n=j *C n c+B n cT_n = j_{\ast} C_n^c + B_n^c22X˜\tilde{X}B n cB_n^cB nB_ne(P)e'(P)A nA_nC n cC_n^cj *C n cj_*C_n^cS PS_PX inX^{in}X outX^{out}T n=j *C n c+B n cT_n = j_*C_n^c + B_n^cT nT_nH 2(X˜)=j *H 2(X)S PH_2(\tilde{X}) = j_*H_2(X) \oplus S_PT n c=j *C n cT_n^c = j_*C_n^cα\alphae(P)e(P)C x\partial C_x22AAAAP+T+(γ 0)P+ T +\mathcal{M}(\gamma_0)22MMPPTTΩ\Omega(γ 0)\mathcal{M}(\gamma_0)11C 1(T 2)C_1(T^2)T 2T^2kkSSYYkk|S||S|YYkkC k(Y)C_k(Y)33MMe(P)e'(P)fSL(2,Z)f \in SL(2,\Z)33MM22T 2=W/Z 2T^2 = W/ \Z^2π:R×T 2M\pi: R\times T^2 \to MT 2T^2ccccT 2T^2WW[α][\alpha]α\alphaT 2T^2xxyyWWxy¯\overline{xy}xxyyxy\overrightarrow{xy}xy¯\overline{xy}α\alphaα\alphaz(x)z(x)s=0s=0α 0\alpha_0α\alphaPPP˜\widetilde{P}WT 2W \to T^2Z 1(T 2,Q)Z_1(T^2,\Q)11P˜\widetilde{P} PΩ= P˜ΩQ\int_{P} \Omega = \int_{\widetilde{P}} \Omega \in \QAA22γ 0T 2\gamma_0 \subset T^20022(γ 0)\mathcal{M}(\gamma_0)γ 0×[0,1]T 2×R\gamma_0 \times [0,1] \subset T^2 \times RMMZ 1(T 2,Q)Z_1(T^2,\Q)fff 1(γ 0)f^{-1}(\gamma_0)f 1f^{-1}|tr(f 1)|>2|\tr(f^{-1})| >2det(f 1I)=det(If)=tr(f)20\det(f^{-1} -I)= det( I - f) = \tr(f) -2 \neq 0N=det(f 1I)N= \det(f^{-1} -I)[γ 0]H 1(T 2,Z)[\gamma_0] \in H_1(T^2,\Z)[γ 0]=N{(f 1I) 1([α 0])}[\gamma_0] = N \{(f^{-1} - I)^{-1} ([\alpha_0]) \}11Z 1(T 2,Q)Z_1(T^2,\Q)γ 0[γ 0]\gamma_0 \in [\gamma_0]22(γ 0)\mathcal{M}(\gamma_0)Z 1(T 2,Q)Z_1(T^2,\Q)Z 1(T 2,Z)Z_1(T^2,\Z)h 1h_1h 2h_2π\piα 0\alpha_0γ 0\gamma_0T 2T^2c 1c_1c 2c_2WWc 1=Nh 1(0)c_1 = Nh_1(0)c 2=h 2(0)c_2=h_2(0)dWd \in Wd=f 1(c 2)d =f^{-1}(c_2)WWT˜\widetilde{T}0,c 2,d0,c_2,dT˜\widetilde{T}22T˜=0c 2¯+c 2d¯0d¯. \partial \widetilde{T} = \overline{0c_2} + \overline{c_2d} - \overline{0d}. TTT˜\widetilde{T}π\piπ\pic 2d¯\overline{c_2d}h 2h_20c 1¯\overline{0c_1}Nα 0N\alpha_0c 2d¯\overline{c_2d}Nα 0N\alpha_0Z 1(T 2,Z)Z_1(T^2,\Z)((γ 0)+T)=f 1(γ 0)γ 0+γ 0+α 0f 1(γ 0)=Nα 0. \partial (\mathcal{M}(\gamma_0) + T ) = f^{-1}(\gamma_0) -\gamma_0 +\gamma_0 + \alpha_0 - f^{-1}(\gamma_0)= N\alpha_0. A 0=(γ 0)+TA_0 = \mathcal{M}(\gamma_0) +TZ 1(M,Z)Z_1(M,\Z)AAA=1N(NP+A 0)=P+1NT+1N(γ 0)A = \frac{1}{N} (NP + A_0) = P + \frac{1}{N}T + \frac{1}{N} \mathcal{M}(\gamma_0)MMZ 1(M,Q)Z_1(M,\Q)A=α. \partial A = \alpha. Ω\OmegaAAPPT˜\widetilde{T}T˜\widetilde{T}Ω\OmegaTTΩ\Omega(c)\mathcal{M}(c)11aabb33MMLk(a,b)=A,b\Lk(a,b) = \langle A,b \rangleAA22MMaabbMMAAMMaabbaabbbbssa,bH 1(T 2,Z)a,b \in H_1(T^2,\Z)aabbZ 2\Z^2T 2T^2aabbR×T 2R \times T^2MMa=a(0)=0×aa=a(0)=0 \times ab=b(eps)=eps×bb=b(\eps)= \eps \times bLk(a,b(ε))Lk(a, b(\epsilon))AAcc(f 1I)(c)=a(f^{-1} - I) (c) =aM(c)M(c)22ccM(c)=(f 1I)(c)=a\partial M(c) = (f^{-1} - I) (c) =a\cdotMM\cdot11ε×T 2\epsilon \times T^2\cdot110×T 20 \times T^2,\langle \cdot, \cdot \rangleH 1(T 2,Q)H_1(T^2,\Q)fSL(2,Z)f \in SL(2,\Z)H 1(T 2,Z)H_1(T^2, \Z)11T 2T^2R 3R^3Lk(C n,C m)Lk(\partial C_n, \partial C_m)JxJxΛ W\Lambda_W(Jx,x)=0(Jx,x)=0u=kzxzp000u= \kzxz{\sqrt{p}}{0}{0}{0}W={kzxz0lala0;laK}KW = \{ \kzxz{0}{\la}{-\la'}{0};\; \la \in K \} \simeq KKKla,μ=1p(laμlaμ)\langle \la, \mu \rangle = \frac{1}{\sqrt{p}} (\la \mu' - \la'\mu)N={n(la)=kzxz1la01}N= \left\{ n(\la)= \kzxz{1}{\la}{0}{1} \right\}μK\mu \in Kn(la)μ=μ+la,μun(\la) \mu = \mu + \langle \la, \mu \rangle uC μ\partial C_{\mu}Rμ={laK R;la,μ=0}R \mu = \{\la \in K_R; \; \langle \la, \mu \rangle =0 \}𝒪 K\mathcal{O}_Keps\epsU +U_+𝒪 K\mathcal{O}_Kffeps\eps'd1(mod4)d \equiv 1 \pmod{4}m=1m=1C 1C_1x=1Kx =1 \in KC 1SL 2(Z)backhC_1 \simeq SL_2(\Z) \back \hmin\min',\langle\,,\, \rangleUU(p,q)(p,q)mmU=VU=VU=WU=WG=SO 0(U R)G = \SO_0(U_{R})KKD=G/KD=G/KcalS(U R)\calS(U_{R})U RU_{R}SL 2(R)SL_2(R)ω\omegaτh\tau \in \hzDz\in DφcalS(U R)\varphi \in \calS(U_{R})SO(2)\SO(2)SL 2(R)SL_2(R)rrg τSL 2(R)g'_{\tau} \in SL_2(R)φ 0(x)=φ(x)e π(x,x)\varphi^0(x) = \varphi(x) e^{\pi (x,x)}EEGGg zGg_z \in Gz 0z_0DDzDz \in Dφ[calS(U R)E] K\varphi \in [\calS(U_{R}) \otimes E]^KEEKKU RU_{R}φ(x,z)\varphi(x,z)φ(x,τ,z)\varphi(x,\tau,z)xU,zD,τx \in U, z \in D, \tau \in \mathbb{H}VVGG𝔤=𝔨𝔭\mathfrak{g}= \mathfrak{k} \oplus \mathfrak{p}𝔤\mathfrak{g}KK𝔤wwedge2V R\mathfrak{g} \simeq \wwedge{2} V_{R}X ij=e ie j𝔤X_{ij} = e_i \wedge e_j \in \mathfrak{g}𝔭\mathfrak{p}X ijX_{ij}1i21 \leq i \leq 23j43 \leq j \leq 4ω ij\omega_{ij}DDω 13ω 14ω 23ω 24\omega_{13} \wedge \omega_{14} \wedge \omega_{23} \wedge \omega_{24}GGDDVVφ 2\varphi_2calA 2(D)\calA^2(D)22DDGGφ 2\varphi_2φ 0(x):=e π(x,x) 0\varphi_0(x) := e^{-\pi(x,x)_{0}}(x,x) 0= i=1 4x i 2(x,x)_0= \sum_{i=1}^4 x_i^2DDφ 2\varphi_222ψ 1\psi_100ω(L)\omega(L)SL 2SL_2calS(V R)\calS(V_{R})ddDDh\hLLLLffh\hψ˜ 1\tilde{\psi}_1ψ˜ 1\tilde{\psi}_1x0x\ne 0ψ˜ 2,0 0(x)=ψ˜ 1(x)e π(x,x)\tilde{\psi}^0_{2,0}(x) = \tilde{\psi}_1(x) e^{\pi (x,x)}ψ˜ 1(x,z)\tilde{\psi}_1(x,z)ψ˜ 1\tilde{\psi}_1xSpan[e 3,e 4] x \notin \Span[e_3,e_4]^{\perp}ψ˜ 1(x,z)\tilde{\psi}_1(x,z)xxzD xz \notin D_xψ˜ 1\tilde{\psi}_122ψ˜ 1(x,z)\tilde{\psi}_1(x,z)11D xD_xD xD_{x}ddDD(x,x)0(x,x)\leq 0φ 2(x)\varphi_2(x)Lψ˜ 1(x,τ)=ψ 1(x,τ)L\tilde{\psi}_1(x,\tau) = \psi_1(x,\tau)ψ˜\tilde{\psi}Orth(p,q)Orth(p,q)ψ\psiφ\varphir2r-2rrψ˜\tilde{\psi}dψ˜=φd \tilde{\psi} = \varphiφ q\varphi_{q}ψ q1\psi_{q-1}ψ˜\tilde{\psi}C xC_xWWWVW\subset V(1,1)(1,1)VVWW𝔪R\mathfrak{m} \simeq RM=SO 0(W R)M = \SO_0(W_{R})X 23=e 2e 3X_{23} = e_2 \wedge e_3ω 23\omega_{23}D WD_WMMW RW_{R}(,)(\,,\,)D WD_Ws 0{\bf s}_0e 3e_3D WRD_W \simeq Rs=Spanx(s){\bf s} = \Span x(s)sss{\bf s}xWx \in WD W,xD_{W,x}DDD W,x={sD;sx}D_{W,x} = \{ {\bf s} \in D; \; {\bf s} \perp x \}s=D W,x{\bf s} = D_{W,x}(x,x(s))=0(x,x({\bf s})) =0s(x)=D W,x{\bf s}(x)=D_{W,x}WWφ 1,1\varphi_{1,1}W RW_{R}calA 1(D W)W C\calA^1(D_W) \otimes W_{\C}MMφ 1,1\varphi_{1,1}22φ 1,1(x,s)\varphi_{1,1}(x,s)φ 1,1 0\varphi_{1,1}^0ψ 0,1\psi_{0,1}00ψ 0,1(x,s)\psi_{0,1}(x,s)ψ 0,1 0\psi_{0,1}^0ψ 0,1\psi_{0,1}ψ 1,112Λ 1,1-\psi_{1,1} - \tfrac12 \Lambda_{1,1}φ 1,1\varphi_{1,1}ψ 0,1\psi_{0,1}ψ˜ 0,1\tilde{\psi}_{0,1}VVxWx \in Wx=0x=0ψ˜ 0,1 0(x)\tilde{\psi}_{0,1}^0(x)ψ˜ 0,1 0(x,s)\tilde{\psi}_{0,1}^0(x,s)ψ˜ 0,1(x,s)\tilde{\psi}_{0,1}(x,s)D w,xD_{w,x}AABBD WD_WG(12,a)= a e uu 1/2du\G(\tfrac12,a) = \int_a^{\infty} e^{-u} u^{-1/2} duG\Gs=1/2s=1/2BBD WD_WAAAABBD WD_WWWAABBC 2C^2WWA(x)(1/2)x 2x 3|x 3|e π(x,x)A(x)- (1/2) x_2 \frac{x_3}{|x_3|} e^{-\pi (x,x)}C 1C^1WWx 3=0x_3=0|x|x n|x|x^nC nC^nn>0n>0ψ˜ 0,1\tilde{\psi}_{0,1}D W,xD_{W,x}ψ˜ 0,1\tilde{\psi}_{0,1}'A(x)A'(x)B(x)B'(x)WWB(x)+12|x 3|e π(x,x)B'(x) + \tfrac12|x_3|e^{- \pi (x,x)}C 2C^2WWC 2C^2MMA(x)+12x 2x 3|x 3|e π(x,x)A'(x) + \tfrac12 x_2 \frac{x_3}{|x_3|}e^{- \pi (x,x)}C 1C^1WWC 1C^1MMψ˜ 0,1\tilde{\psi}'_{0,1}ψ˜ 0,1(x,τ,s)=v 1/2m(s)ψ˜ 0,1(m 1(s)vx)e πi(x,x)τ\tilde{\psi}_{0,1}'(x,\tau,s) = v^{-1/2} m(s) \tilde{\psi}_{0,1}'(m^{-1}(s)\sqrt{v}x) e^{\pi i (x,x)\tau}ψ˜ 0,1(x)\tilde{\psi}_{0,1}'(x)D WD_WD W,xD_{W,x}τ\tauD W,xD_{W,x}ψ˜ 0,1(x)\tilde{\psi}_{0,1}(x)ψ˜ 0,1(x)\tilde{\psi}_{0,1}'(x)D WD_W(x,x)>0(x,x)>0D W,xxD_{W,x} \otimes x00D W,xD_{W,x}xWx \in Wϕ 0,1\phi_{0,1}WWψ˜ 0,1\tilde{\psi}_{0,1}ψ˜ 0,1\tilde{\psi}_{0,1}'WWϕ 0,1(x,s)\phi_{0,1}(x,s)B(x)+B(x)B(x) + B'(x)C 2C^2WWC 2C^2MMA(x)+A(x)A(x) + A'(x)C 1C^1WWC 1C^1MMX 23(B+B)=(A+A)X_{23}(B + B') = -(A + A')WWxxϕ 0,1(x,s)\phi_{0,1}(x,s)C 1C^1D WD_WW CW_{\C}φ 1,1\varphi_{1,1}D WD_Wϕ 0,1\phi_{0,1}K=SO(2)K'=\SO(2)22χ\chiSO(2)U(1)\SO(2) \simeq U(1)ϕ 0,1\phi_{0,1}B(x)+B(x)B(x)+B'(x)B(x)+B(x)B(x)+B'(x)ω(k)\omega(k')B+BB+B'L 1L^1ω(k)(B+B)\omega(k')(B+B')[ω(k)(B+B)]=χ 2(k)[B+B][\omega(k')(B+B')] = \chi^2(k')[B+B']KK'x 2 2x 3 2=0x_2^2-x_3^2=0BBB˜(x)\tilde{B}(x)i4π+πir 2\frac{-i}{4\pi} \square + \pi i r^2B˜(x)\tilde{B}(x)x 3=0x_3=0x 3Γ(12,2πx 3 2)=22πsgn(x 3)e 2πx 3 2\frac{\partial}{\partial x_3} \Gamma(\tfrac12,2 \pi x_3^2) = - 2 \sqrt{2\pi} \sgn(x_3) e^{-2 \pi x_3^2}H[B]H[B]H[B]H[B']BBBB'C 2C^2|x 3|e π(x 2 2x 3 2)|x_3|e^{-\pi(x_2^2-x_3^2)}ffWWH[B+B]=[H(B+B)]=2i[B+B]H[B+B'] = [H(B+B')]= 2i[B+B']ι P\iota_P𝔫WRu 2V R𝔤\mathfrak{n} \simeq W \wedge R u \in \bigwedge^{2} V_R \simeq \mathfrak{g}WW(,)(\,,\,)𝔫 *WRu\mathfrak{n}^{\ast} \simeq W \wedge R u'ι P\iota_Pι P\iota_PNNcalS(W R)\calS(W_{R})e 2e_2e 3e_3WWι P\iota_P11w 2,w 3w_2,w_3WWw=w 2e 2+w 3e 3w=w_2e_2+w_3e_3ι P\iota_PWWφ 1,1 P\varphi_{1,1}^Pϕ 0,1 P\phi_{0,1}^Pψ 0,1 P\psi_{0,1}^Pψ 0,1 P{\psi'}_{0,1}^PWWcalL W\calL_WG P\G_PWWG N\G_NWWφ 1,1\varphi_{1,1}ψ 0,1\psi_{0,1}ϕ 0,1\phi_{0,1}θ φ 1,1(τ,calL W)\theta_{\varphi_{1,1}}(\tau,{\calL_W})θ ϕ 0,1(calL W)\theta_{\phi_{0,1}}(\calL_W)22SL 2(Z)SL_2(\Z)θ ϕ 0,1\theta_{\phi_{0,1}}ϕ 0,1\phi_{0,1}B+BB+B'ϕ 0,1\phi_{0,1}C 2C^2WWX 23X_{23}A+AA+A'ϕ 0,1\phi_{0,1}WWcalL W\calL_Wθ ϕ 0,1\theta_{\phi_{0,1}}Q\QVV22ι P\iota_PWWe(P)e'(P)θ ψ 0,1 P\theta^P_{\psi_{0,1}}θ ϕ 0,1 P\theta^P_{\phi_{0,1}}ι P\iota_Pcc11e(P)e'(P)C n\partial C_nc=C yc=\partial C_yC yC_yC nC_n cθ ϕ P(τ,calL W P)\int_{c} \theta^P_{\phi}(\tau,\calL_{W_P})cce(P)e'(P)ϕ 0,1=ψ˜ 0,1+ψ˜ 0,1\phi_{0,1} = \tilde{\psi}_{0,1} + \tilde{\psi'}_{0,1}β(s)=116π 1 e stt 3/2dt\beta(s) = \tfrac1{16\pi} \int_1^{\infty} e^{-st}t^{-3/2} dt𝒲(τ)\mathcal{W}(\tau)R 3R^3S 3S^3H 3H^3cc1133UUccβ\betaMUM-UUU11cc11aaMUM-UMMccccUUccη\etaccUUη\eta11ccη M\eta_Mη\etaMMη M\eta_M22MMcccc11β\betaMMdβ=η Md \beta = \eta_Mβ\betaccaa11MUM -UMMAAA=a\partial A = aη M\eta_MVVaaUUη MV\eta_{M-V}η M\eta_MMVM-Vcc(MV,(MV))(M-V, \partial (M-V))β\betaMUM-Uβ\betacc11e 2πnψ˜ 0,1(n)e^{2 \pi n} \tilde{\psi'}_{0,1}(n)(C n) P(\partial C_n)_PPPe(P)e(P)F nF_nC n\partial C_nF xF_xc xc_xc xc_xD xe(P)D_x \cap e(P)e(P)e'(P)n>0n>011e 2πnψ˜ 0,1(n)e^{2 \pi n} \tilde{\psi'}_{0,1}(n)C n\partial C_ne(P)e'(P)UUF nF_ncc11e(P)e'(P)F nF_nc=c yc=c_yF xF_xC n\partial C_nccF nF_nc=c yc=c_yn>0n>0η\eta22e(P)e'(P)F nF_nη=Ω P\eta =\Omega_PA nA_nΩψ˜ 0,1(n)=0\Omega \wedge \tilde{\psi'}_{0,1}(n) =0Ω\Omega(0,2)(0,2)ψ˜ 0,1(n)\tilde{\psi'}_{0,1}(n)(0,1)(0,1)e(P)e'(P)η\etaη=dω\eta = d \omega11ω\omegaη\etaF nF_nc x+kuc_{x+ku}c xc_xF xF_x a x+kuη= c x+kuω= c xω= a xη\int_{a_{x+ku}} \eta = \int_{c_{x+ku}} \omega = \int_{c_x} \omega = \int_{a_x} \etaη\etaxcalL Wx \in \calL_Wx=μe 2x = \mu e_2μ=±2n\mu = \pm \sqrt{2n} gG Mg *ψ˜ 0,1(x)\sum_{ \g \in \G_M} \g^{\ast} \tilde{\psi'}_{0,1}(x)e(P)e'(P)s=0s=0U eps=(eps,eps)×T 2U_\eps= (-\eps,\eps) \times T^2e(P)e'(P)F xF_xηψ˜ 0,1(x)=d(ωψ˜ 0,1(x))\eta \wedge \tilde{\psi'}_{0,1}(x) = d(\omega \wedge \tilde{\psi'}_{0,1}(x))U epsU_{\eps}g1\g \ne 1ω(s,w)ψ˜ 0,1(g 1x,s,w)\omega(s,w) \wedge \tilde{\psi'}_{0,1}(\g^{-1}x,s,w)s=0s=0g=1\g=1T 2/c e 2T^2/ c_{e_2}c e 2c_{e_2}0×S 10 \times S^1T 2T^2ω 3\omega_3dw 3dw_3ω\omegaD x\partial D_{x}w 3w_3WWω\omegac e 2c_{e_2}ω\omegaF xF_x c e 2ω(0,w 2,w 3)\int_{c_{e_2}} \omega(0,w_2,w_3)w 2w_2( T 2/c e 2dw 2)( c e 2ω)e πμ 2\left( \int_{T^2/ c_{e_2}} dw_2 \right)\left( \int_{c_{e_2}} \omega \right)e^{- \pi \mu^2} c e 2ω= A e 2η\int_{c_{e_2}} \omega = \int_{A_{e_2}} \etaWRW \to Rw(w,e 2)w \mapsto (w,e_2)T 2/C e 2R/(min laΛ W|(la,e 2)|)ZT^2/ \partial C_{e_2} \simeq R / (\min_{\la \in \Lambda_W}'|(\la,e_2)|)\Zcce(P)e'(P)3311e(P)e'(P)N(c)N(c)ccN(c)N(c)F nF_nη c\eta_c22N(c)N(c)11N(c)N(c)N(c)N(c) e(P)η cψ˜ 0,1(n)= e(P)ψ˜ 0,1(n)η c\int_{e'(P)} \eta_c \wedge \tilde{\psi'}_{0,1}(n)= \int_{e'(P)} \tilde{\psi'}_{0,1}(n) \wedge \eta_cη=η c\eta = \eta_cV nV_nF nF_ne(P)V ne'(P) - V_nN(c)N(c)ψ˜ 0,1(n)\tilde{\psi'}_{0,1}(n)e(P)V nsupp(η c)e'(P) - V_n \supset \supp (\eta_c)η c\eta_cη c\eta_ce(P)V ne'(P) - V_nPD(c)PD(c)cce(P)V ne'(P) -V_nccF nF_nc=c yc=c_yF xF_xC n\partial C_nx=μe 2x = \mu e_2cce 3We_3 \in Ws(x)=0s(x )=0e 3e_3(0,Re 3)(0,R e_3)e(P)e'(P)ψ˜ 0,1(x)\widetilde{\psi}'_{0,1}(x)s=0s=0cc γΓ Mγ *ψ˜ 0,1(x)\sum_{\gamma \in \Gamma_M} \gamma^* \widetilde{\psi}'_{0,1}(x)xxc(ε)c(\epsilon)F nF_ncF xF nc \subset F_x \subset F_nc 1,,c kc_1,\cdots,c_kC n\partial C_nF xF_xccc i,1ikc_i,1 \leq i \leq kC n\partial C_nccc i=cc_i = cLk(c,c)Lk(c,c)c ic_iccccc ic_iccc(eps)c(\eps)c ic_ic×[0,eps]c \times [0,\eps]c ic_ic ic_ie(P)e'(P)Lk(c i,c(eps))= Lk(c i,c)\Lk(c_i, c(\eps)) =\ Lk(c_i, c)C n cC_n^cH 2(X)H^2(X)XXφ 2\varphi_2calL=L+h\calL = L+hnQn \in \Qθ φ 2(τ,calL)\theta_{\varphi_2}(\tau,\calL)φ 2(n)\varphi_2(n)22XXθ φ 2(τ,calL)\theta_{\varphi_2}(\tau,\calL)τ\tau22G(N)\G(N)=L\mathcal{L} = Lθ φ 2(τ,calL)\theta_{\varphi_2}(\tau,\calL)G 0(d)\G_0(d)22η\etaXXδ h0\delta_{h0}ω\omegaDDω 13ω 14+ω 23ω 24\omega_{13}\wedge \omega_{14}+\omega_{23}\wedge \omega_{24}22G(N)SL 2(Z)\G(N) \subset SL_2(\Z)CC22XXH 2(X,Z)H_2(X,\Z)Λ(C,τ)\Lambda(C,\tau)C 0C_012πδ h0[ω]-\frac{1}{2\pi}\delta_{h0} [\omega]n>0n>0φ 2(n)\varphi_2(n)C nC_nφ 2(n)\varphi_2(n)n0n \leq 0θ φ 2(calL V)\theta_{\varphi_2}(\calL_V)θ ψ 1(calL V)\theta_{\psi_1}(\calL_V)XXX¯\overline{X}i P *i_P^{\ast}e(P)e'(P)X¯\overline{X}θ φ 2(calL V)\theta_{\varphi_2}(\calL_V)θ ψ 1(calL V)\theta_{\psi_1}(\calL_V)L=Zu+L W+ZuL = \Z u + L_W + \Z u'h=0h=0tt \to \inftyz=z(t,0,0)z=z(t,0,0)φ 0(x,z)=exp(π[t 2y 1 2+2q(x)+t 2y 1 2])\varphi_0(x,z) = \exp\left(-\pi[ t^{-2}y_1^2+ 2q(x')+t^2y_1'^2]\right)x=y 1u+x+y 1uVx = y_1u+x'+y_1'u' \in VxWx' \in Wtt \to \inftyθ(τ,ψ 1 V,calL V)\theta(\tau,\psi_1^V,\calL_V)y=0y'=0L WL_Wtty 1y_1xWx' \in Wtt \to \inftyθ φ 2(calL V)\theta_{\varphi_2}(\calL_V)X¯\overline{X}ψ˜ 0,1{ \tilde{\psi}_{0,1}}ψ˜ 0,1\tilde{\psi}_{0,1}XXXXψ˜ 2,0(n)\tilde{\psi}_{{2,0}}(n)φ 2(n)\varphi_2(n)xcalL Vx \in \calL_VnQn \in \Q11XXn>0n>0C nC_n11e(P)e'(P)ψ˜ 0,1(n)\tilde{\psi'}_{0,1}(n)ϕ 0,1 P(n)\phi_{0,1}^P(n)11ψ˜ 1(n)\tilde{\psi}_{{1}}(n)e(P)e'(P)PP=Qu\ell=\Q ux=au+x W+bux = au + x_W + bu'z=(w,t,s)z=(w,t,s)(,) s(\,,\,)_sWWxcalL Vx \in \calL_Vb0b \ne 0ψ˜ 1(n)\tilde{\psi}_1(n)tt \to \inftyx WcalL Wx_W \in \calL_Wx W+(a+h)ucalL Vx_W +(a+h)u \in \calL_VaZa \in \ZhQ/Zh \in \Q/\ZcalL Vu \calL_V \cap u^{\perp} aZψ˜ 1(x W+(a+h)u,z)\sum_{a \in \Z} \tilde{\psi}_1(x_W +(a+h)u,z)tt \to \inftyw=0w=0s=0s=0aZa \in \Zk0k \ne 0k=0k=0ψ˜ 0,1(x W)\tilde{\psi}_{0,1}(x_W)x W=0x_W=0n=0n=022θ φ 2\theta_{\varphi_2}X¯\overline{X}θ φ 2\theta_{\varphi_2}X¯\partial \overline{X}φ\varphiφ 2\varphi_2ϕ\phiϕ 0,1\phi_{0,1}C C^{\bullet}(θ φ 2(calL V), [P]θ ϕ 0,1 P(calL W P))(\theta_{\varphi_2}(\calL_V), \sum_{[P]} \theta^P_{\phi_{0,1}}(\calL_{W_P}))22C C^{\bullet}(θ φ,θ ϕ)(\theta_{\varphi},\theta_{\phi})[[θ φ,θ ϕ]][[\theta_{\varphi},\theta_{\phi}]]H 2(C )H^2(C^{\bullet})[θ φ,θ ϕ][\theta_{\varphi},\theta_{\phi}]H c 2(X)H^2_c(X)[θ φ,θ ϕ][\theta_{\varphi}, \theta_{\phi}]Λ c\Lambda^c22X¯\overline{X}H 2(X¯)=H 2(X)H^2(\overline{X}) = H^2(X)[[θ φ,θ ϕ]][[\theta_{\varphi}, \theta_{\phi}]][θ φ,θ ϕ][\theta_{\varphi}, \theta_{\phi}]XXΛ c\Lambda^cτ\tau[θ φ,θ ϕ](τ)[\theta_{\varphi}, \theta_{\phi}](\tau)22η\etaX¯\overline{X}22G(N)SL 2(Z)\G(N) \subseteq SL_2(\Z)CC22XXH 2(X¯,X¯,Z)H_2(\overline{X},\partial \overline{X},\Z)ω\omegaω\omega[θ φ,θ ϕ][\theta_{\varphi}, \theta_{\phi}]H 2(X˜)H^2(\tilde{X})j #:H c 2(X)H 2(X˜)j_{\#}: H_c^2(X) \to H^2(\tilde{X})j *C n c=T n cj_{\ast} C_n^c = T_n^cω\omegaXXω\omegaCC[ω]=PD(C)[\omega] = \PD(C)ω\omegaPD(C)\PD(C)ω˜\tilde{\omega}N(C)N(C)CCXXω˜\tilde{\omega}N(C)N(C)ω˜\tilde{\omega}CCMMN(C)N(C)M=X˜M = \tilde{X}Λ\LambdaH 2(X)H_2(X)H 2(X)H_2(X)H 2(X)H_2(\partial X)θ φ 2\theta_{\varphi_2}j *H 2(X)H 2(X)/H 2(X)j_{\ast} H_2(X) \simeq H_2(X)/ H_2(\partial X)j *H 2(X)j_{\ast} H_2(X)X\partial XC yC_yC yC_yC y{\partial C_y}(C n cC y)(C^c_n \cdot C_y)11C nC_nC yC_yC nC_nC yC_y C yθ φ 2\int_{C_y} \theta_{\varphi_2}C yC_yC nC_nOrth(p,2)Orth(p,2)φ 2\varphi_2ψ˜ 1\tilde{\psi}_1ψ˜ 1(n)\tilde{\psi}_1(n)Lk(C n,C y)= [P]Lk((C n) P,(C y) P)\Lk(C_n,C_y) = \sum_{[P]} \Lk((\partial C_n)_P, (\partial C_y)_P)C n\partial C_nC y\partial C_y (C y) Pθ ϕ P(τ,calL W P)\int_{(\partial C_y)_P} \theta^P_{\phi}(\tau,\calL_{W_P})C y\partial C_ye(P)e'(P)C yC_ye(P)e'(P)A nA_nC n cC yC_n^c \cdot C_yT n cT mT^c_n \cdot T_m(T nT m) X(T_n \cdot T_m)_X(T nT m) (T_n \cdot T_m)_{\infty}(T nT m) X=(C nC m) X(T_n \cdot T_m)_X = (C_n \cdot C_m)_X(T nT m) X(T_n \cdot T_m)_X(T nT m) X(T_n \cdot T_m)_X C yθ φ 2(τ,calL V)\int_{C_y} \theta_{\varphi_2}(\tau,\calL_V)Λ c\Lambda^cC n cC_n^cn>0n>0φ 2(n)\varphi_2(n)C nC_nη\eta22η\etaη\eta22X¯\overline{X}φ 2\varphi_2(p,q)(p,q)n>0n>0C nC_nψ˜ 1(n)\tilde{\psi}_1(n)11XX22η\etaψ\psiψ˜ 1\tilde{\psi}_1ψ˜\tilde{\psi}ψ˜ 1\tilde{\psi}_1ψ˜ 1\tilde{\psi}_1ξ\xiOrth(p,2)Orth(p,2)Ξ(n)= xcalL nξ(x)\Xi(n) = \sum_{x\in\calL_n} \xi(x)C nC_ndd cξ=φ 2dd^c \xi = \varphi_2d c=14πi(¯)d^c = \tfrac{1}{4\pi i}(\partial - \overline{\partial})d cξ=ψ˜ 1d^c \xi = \tilde{\psi}_1d cφ 0=ψ 1d^c \varphi_0 = -\psi_1nQn \in \Qn>0n>0φ 2 c(n)\varphi_2^c(n)C n cC_n^cπ *ϕ 0,1 P(n)\pi^{\ast} \phi^P_{0,1}(n)VVX¯\partial \overline{X}ffVVtt11t=t=\inftyφ 2 c(n)\varphi_2^c(n)nn[θ φ,θ ϕ][\theta_{\varphi},\theta_{\phi}]XXη\etaX¯\overline{X}e(P)e'(P)η P\eta_Pe(P)e'(P)η P\eta_Pe(P)e(P)NNX¯\overline{X}θ φ 2\theta_{\varphi_2}n>0n>0C n cC^c_nψ˜ 1 c(n)\tilde{\psi}_1^c(n)11XX22X¯\overline{X}22η\etaX¯\overline{X}n0n\leq 0φ 2 c(n)\varphi^c_{2}(n)ψ˜ 2 c(n)\tilde{\psi}^c_{2}(n)n0n \leq 0C n c=C_n^c = \emptysetx=0x=0η\etaΞ(n)\Xi(n)T n cT_n^cX˜\tilde{X}XXXXPPρ T\rho_{T}calF\calFG\GDDtt11tTt\leq T00T+1T+1ρ Tη\rho_T\eta( C nη)e 2πn\left(\int_{C_n} \eta\right)e^{-2\pi n}TT \to \inftyTTd(ρ Tη)=ρ T(t)dtη+ρ Tdηd(\rho_T \eta) = \rho_T'(t) dt \wedge \eta + \rho_T d\etaρ T(t)=0\rho_T'(t)=0[T,T+1][T,T+1]TTf1f \equiv 1ψ˜ 1(n)=π *ψ˜ 0,1(n)+O(e Ct)\tilde{\psi}_1(n) = \pi^{\ast} \tilde{\psi}_{0,1}(n) + O(e^{-Ct})ϕ 0,1(n)=ψ˜ 0,1(n)+ψ˜ 0,1(n)\phi_{0,1}(n) = \tilde{\psi}_{0,1}(n)+\tilde{\psi}'_{0,1}(n)ψ˜ 1(n)fπ *ϕ 0,1(n)\tilde{\psi}_1(n) - f \pi^{\ast}\phi_{0,1}(n)π *ψ˜ 0,1(n)-\pi^{\ast} \tilde{\psi'}_{0,1}(n)η\etattη=Ω\eta = \Omegaη\etaω\omegaC n c=C n(A n)C_n^c = C_n \coprod (-A_n)